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J. Phys.: Condens. Matter 2 (1990) 2687-2698. Printed in the UK 
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disordered metals in the muffin-tin potential model: 11. 
Decomposition of the vector waves 
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t Department of Physics, Faculty of Science, Shimane University, Matsue 690, Shimane, 
Japan 
$ Institut de Physique, UniversitC de Neuchatel, Rue A-L Breguet 1, CH-2000 Neuchatel, 
Switzerland 

Received 4 August 1989 

Abstract. The basic formulation of the EMA transport theory in disordered metals in the 
muffin-tin potential model is further investigated. We decompose the vector waves, which 
represent the vertex corrections, into longitudinal and transverse components. This leads us 
to the reduction of the Bethe-Salpeter equations into the one-dimensional form analogous 
to the case of the electronic structure calculations discussed previously by Huisman er ai. 
Although the transverse component makes no direct contribution to the conduction, there 
exists a scattering mechanism that couples both components. Therefore the longitudinal 
component must be determined self-consistently with the transverse one, and the latter is 
thus shown to have a finite effect on the electron transport. 

1. Introduction 

In the previous paper of this series (Itoh et a1 1989, hereafter referred to as I) we have 
reformulated the EMA transport theory due to Roth and Singh (1982) in a tractable form 
in the case of the muffin-tin potential model. By ‘tractable’ it is meant that the difficult 
off-shell corrections are suitably integrated into the formalism in such a way that the 
equations to be solved take practically the same form as that of the on-shell calculations 
(see equations (3.26) and (3.27) in I). The mathematical structure of these equations is 
very similar to that foundin the caseof the density-of-states (DOS) calculations (equations 
(3.13)-(3.16) in I), except that the former deals with vector quantities. 

However, in applying the muffin-tin EMA to practical cases, whether to the DOS or to 
transport, one encounters some technical problems. The first is that one must solve the 
integral equations for matrices labelled by L = (1, m). The number of matrix elements 
to be determined self-consistently becomes rather formidable when the higher-order 
phase shifts are taken into account. Secondly, the integration in the equations is three- 
dimensional. In the case of the DOS calculations the above problems have already been 
solved by considering the symmetry properties of the scalar quantities due to the isotropy 
of the system (Asano and Yonezawa 1980, Huisman et a1 1981, hereafter referred to as 
AY and HNSB, respectively). The integral equations have been reduced by these authors 
to one-dimensional form. All the scalars in the new equations are labelled by three 
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azimuthal quantum numbers 1, 1‘ and I”, thus reducing the number of independent 
elements. 

In the present paper we re-examine the above idea and attempt to extend it to deal 
with transport. The basic equations derived in the previous paper (equations (3.26) and 
(3.27) in I) represent the propagation of vector waves, each component of which is a 
matrix with respect to the indices L = (1, m). In this sense each component of a vector 
has the same form as for a scalar; its symmetry property is, however, quite different 
from that of the scalars and the simple expression for the latter by HNSM cannot be 
applied directly. Nevertheless, as we shall see later, similar arguments are made possible 
for each component of the vector if we decompose it into longitudinal and transverse 
parts. The result is that the angular dependence of each component is separated from 
the radial part and the integration is reduced to one-dimensional form. Also the magnetic 
quantum numbers m are eliminated from the labelling of the radial part. Thus the 
transport theory developed in I is reduced to the level of the DOS calculations both 
formally and technically. 

At first sight it may appear that only the longitudinal component is the relevant 
quantity, since the transverse component does not contribute to conduction. This is 
indeed true as a whole, but the scattering amplitude between the longitudinal and 
transverse waves is finite and the former can be determined only self-consistently with 
the latter by the integral equations. 

In order to proceed carefully we formulate the problem rather mathematically. In 
section 2 we rederive the results for the scalars obtained by HNSB on a rigorous 
background, emphasising the role of translational and rotational invariance of the 
system. There a simple algebra is introduced of the scalar quantities labelled by three 1- 
values, with multiplication between them defined in a suitable way. This simplifies 
writing down the equations to a great extent, without which the appearance of the 
equations would become really formidable. Owing to this, our formalism becomes much 
more transparent; in particular the reduced integral equations preserve the original 
appearance. In section 3 we discuss the reduction of the vector quantities. Although the 
method of separating the matrix into its radial and angular parts is different for each of 
the three components, it is shown that in each case the radial part is labelled by three 1- 
values and obeys similar algebra to that discussed in section 2. The explicit forms of the 
scattering kernels, which include the structure factor, are also given there. Although we 
have 3 X 3 = 9 combinations for the kernels for each value of I ,  only four of them are 
seen to be independent. The last section is devoted to some discussions. 

We follow the notation used in I. Equations in I are quoted frequently. In that case 
the letter I will be attached to the equation numbers. For example equation (1.1) in I is 
quoted as (1.1.1). 

2. Representation of scalars 

2.1. Symmetry considerations 

As formulated by Roth (1975, 1980; see also I) the EMA equations are written in terms 
of diagonal operators ( t R ,  q ( R )  and Q d ( R ) )  and off-diagonal operators ( G ( R ,  R ’ )  and 
Q ( R ,  R ’ ) ) .  The former become a special case of the latter if the delta function 6(R - R ’ )  
is attached. In fact Q ( R ,  R ’ )  is the sum of the diagonal part Qd(R,  R‘ )6 (R  - R ’ )  and the 
purely off-diagonal part. 
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The translational invariance of the system allows for the relative coordinate rep- 
resentation (1.3.1). The isotropy of the system is expressed in this representation as 

M ( p ,  p ' ;  X )  = %'; g q  (2.1) 
where %p, %p' and 9iX represent the relative position vectors p ,  p' and X in the 
coordinate system rotated by the rotation 3 and M ( p ,  p ' ;  X )  is the relative coordinate 
representation of an arbitrary scalar operator M ( R ,  R ' ) .  From the definition (1.3.3) the 
matrix element of M ( R ,  R ' )  is seen to be given by 

MkL'(P,P') = 1 dX j d P  dp '  YL(P)jdPP)M(P, P' ;xlj ,(P'P')yr,(P') .  (2.2) 

Now we seek the result of the restriction (2.1) on the element (2.2). This is easily seen 
by applying the rotation to MK in K-space and using the transformation property of the 
spherical harmonics. The result is 

M &  = D ~ , ( % ) M ~ i ' D $ , , ( 9 i ) *  (2.3) 
m," 

where the matrix D[(%) is the lth irreducible representation of the rotational group 
corresponding to the rotation 3. In (2.3) we have also introduced the handy notations 
L = (1, rit) and L' = ( l ' ,  rit') associated with L = (1, m) and L' = (1', m'); namely the 
angular momenta with and without tilde have a common 1-value. We follow this con- 
vention hereafter. Note that the dependence o n p  andp'  is assumed for M on both sides 
of (2.3), although it is not shown explicitly. Again we shall follow this hereafter. Of 
course only the K-dependence needs to be assumed when the matrix is on-shell. 

A special case of (2.3) is of particular importance. We set the Euler angles a,  p and 
yof the rotat ion3 = %(a, p, y) equal to a = q k ,  p = Ok and y = 0, where Ok and q k  are 
the direction angles of the K-vector. Then (2.3) becomes 

MkL'(p,p') = D i & ) * M k i ' ( p ,  p')DL,,, ( K )  (2 * 4) 
m," 

where Dfnfi(K) is the representation of 3(qk ,  O k ,  0), the coordinate rotation that brings 
the z axis to the direction of the K-vector. We shall call the coordinate system rotated 
by %(qk, O k ,  0) the 'K-system' hereafter. According to the convention the unit vectors 
along the x , y  and z axes of the K-system are denoted by d k ,  4k and k respectively, 
bearing in mind that they are normal to the surfaces of Ok = const, qk = const and K = 
const, respectively. The importance of (2.4) is that Mk" appearing on the RHS is 
dependent only on K = IK/,  since it is calculated in the K-system, and therefore it shows 
that the angular dependence of the matrix element in the original coordinates is separated 
from the radial part. 

It has been claimed by AY that (2.4) is equivalent to the following form 

MkL' = C(l"'Imm"") [MK]ff:YL"(K) (2.5) 
L" 

where we have used the Wigner coefficient instead of the Gaunt number used in I. The 
above representation is more suitable for practical calculations because the radial part 
[ M K ]  is labelled by 1-values only. It has also been used by HNSB. The EMA equations 
indeed allow for the above forms of the solution, as we shall see later. However, it seems 
to be dependent on the type of integral equation and (2.5) is not a general conclusion 
derived directly from (2.4). In this connection we note that the last equation in AY in the 
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appendix, which connects (2.4) and (2.5), is found to be erroneous. The point becomes 
important in the next section. 

The diagonal operator has a very simple matrix representation. Denoting an arbitrary 
diagonal operator by M d ( R ) ,  its matrix representation is written as 

(2.6) MLL’  
d (P,P’> = MlddLL’*  

That is, a diagonal operator is diagonal with respect to the L-indices and, furthermore, 
the element is dependent only on 1. The above result is obtained by a symmetry argument 
only. Recalling that both M s  in equation (2.3) become independent of K for a diagonal 
operator, the RHS of the same equation is seen to be independent of the Euler angles of 
the rotation 3. We can then take the average over the Euler angles and, making use of 
the orthogonal property of ohm, equation (2.3) turns into (2.6). The property (2.6) has 
already been used in I in deriving (I.3.13)-(1.3.16) from (1.2.1)-(1.2.4). It is also seen 
to be a special case of (2.5) when [MK]ftf’  is independent of K and only the 1“ = 0 
component is non-zero: 

[Md]v: = (4Jd)1/2Mfid~1,dp73. (2.7) 

2.2. Algebra fo r  [MK]ft(: and the reduction of the EMA equation 

Since we shall rely on the representation (2.5) rather than on (2.4), we must deal with 
the quantities labelled by the three azimuthal numbers. We will therefore introduce a 
new algebra for the ‘cubic matrices’ [MK];!,’ in such a way that the relation between the 
ordinary ’square matrices’ MhL’ are properly mapped through (2.5). We use the same 
alphabet for both quantities. When the indices are suppressed they are distinguished 
only by K or K (a cubic matrix is dependent on K = IK/ only). 

First multiplication is examined. We show that the product between two square 
matrices 

(2. sa) MK = SK * TK 

is cast into the form 

MK = S K  63 TK 

by defining multiplication €9 by 

(2.8b) 

In the above equation W(l 1, 1‘ I,; f 3  1”)  is the Racah coefficient. The equivalence between 
( 2 . 8 ~ )  and (2.8b) can be proved by substituting the representations (2.5) for M K ,  SK and 
TK in (2 .8~)  and then using the formula (see e.g. Rose 1957) 

c(1l2 131m m2 m3)c(z3 111‘/m3 m, m’)c(12 l”lm2 ml  m”) 
mi,mz.m3 

= + 1)(21” + 1 ) ] 1 / 2 ~ ( 1 1 2  I‘ E , ;  l3 l”)C(EI’ ~“lmm’m’’). (2.10) 

Essentially the same result as ( 2 . 8 ~ )  and (2.9) is used in HNSB. So far we have tacitly 
assumed that the product of two square matrices of the form (2.5) can be written in the 
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same form, i.e. the group of square matrices of the form (2.5) is closed with respect to 
multiplication. In fact the formula (2.10) guarantees this important aspect. In other 
words the group of cubic matrices [M,];,' has shown to be isomorphic to the group of 
square matrices MkL'  written in the form (2.5), under the multiplication (2.9). 

The above definition of multiplication satisfies the associative law, i.e. 

S, 8 ( T ,  8 U,) = (S, 8 T,) @ U,. (2.11) 

Although the direct proof of (2.11) is formidable, it is rather trivial if we note that both 
sides of (2.11) are the mapping of the same quantity S,( T, U,) = ( S ,  TK)UK. It is also 
trivial that the distributive law holds: 

S K  8 ( T K  + U,) = S,y 8 T K  + S K  69 U,. (2.12) 

The product between the diagonal and off-diagonal matrices becomes particularly 

[ M ,  69 Md]ff,' = [MK]jf8' M'd (2.13) 

simple: 

(2.14) 

which can be proved directly by using (2.7), (2.8b) and (2.9). We note in passing that 
the unit element I for our multiplication is given by 

[I];: = (47G)1'26//'6/"rj. (2.15) 

We are now in a position to prove that the EMA equations (1.3.13)-(1.3.16) allow for 
the solution of the form (2.5). In order to do so we first show that if a matrix U, is of the 
form (2.5), so is the following convolution: 

MK = Ir h(K - K')Ur 

and that its mapped relation is given by 

(2 .16~)  

(2.16b) 

where 

h ' (K ,  K ' )  = I d(cos 0 ) h ( ( K 2  + K'* - 2KK' cos 8)1/2)PI(cos 0 ) .  (2.17) 

Equation (2.16b) is proved if we substitute the expression (2.5) for U,, in (2 .16~)  and 
perform the angular integration in the K-system. In doing so, we make use of the 
following relations: 

Y L ( K ' )  = x a m ( K ) * Y i ( % ( c p k ,  0 k ,  0) * K ' )  = x ~ f n m ( K ) * Y d 0 ,  cp) 

where 0 and cp are the direction angles of K' in the K-system, and 

1 

- 1  

(2.18) 
m m 

Y L ( K )  = [(21+ 1)/4n]"*Dho(K)*. (2.19) 

It is essential that the function h(K - K ' )  depends only on K ,  K' and 0 ,  i.e. that the 
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system is isotropic. The above proof is not the simplest one but is instructive for the later 
argument. 

If the total correlation function h(K - K ' )  is replaced by unity, then h["(K, K') is 
replaced by 261,,0 in (2.16b). According to (2.5) there is no possibility that I" = 0 and yet 
1 # 1'; MK defined by (2 .16~)  therefore becomes diagonal in that case: 

(2 .20~)  

(2.20b) 

We have derived all the necessary relations to map the EMA equations (I.3.13)- 
(1.3.16) onto the cubic matrix space. By way of (2.8b), (2.16b) and (2.206) they become 

Q K  = & d +  Qd@ G @  Q K  (2.21) 

dk '  k" 
h"'(K, K ' ) [ G K  @ Q K t  @ GK]f!8'  (2.22) 

(2.24) 

where z and q are the diagonal cubic matrices, with Mf, being replaced by 2' and q' 
respectively in (2.7). 

The EMA equations for the DOS calculation have thus been rewritten in terms of a 
smaller number of elements. Finally we note that the number of independent elements 
is further reduced by the selection rules for a scalar, i.e. [MK]f:, '  is non-zero only when 
(i) I + 1' + 1" is an even integer, and (ii) I ,  1' and I" satisfy the triangular relation. 

The first condition is proved by noting that the inhomogeneous terms satisfy this 
condition, and that our definition (2.9) of multiplication preserves the same property 
(when I I  + l2  + I " ,  I + l2  + 1, and 1, + I I  + I' are all even, so is I + I' + 1"). The second 
condition states that the three segments of length I ,  I' and I "  can form a triangle. It is also 
satisfied because the Racah coefficient in (2.9) is non-zero only when I ,  I ' ,  I " ,  11 ,  l 2  and 
I ,  take the configuration of a tetrahedron. 

3. Representation of vectors: the transport calculation 

We proceed to the vector operators to discuss transport. As in the case of the scalars we 
distinguish between the off-diagonal vectors (e.g. 6 G ( R ,  R ' ) )  and the diagonal vectors 
(e.g. 6 q ( R ) ) .  Therefore WK is off-diagonal and Kd is diagonal. The possible forms of the 
matrices for these operators are also restricted by the isotropy of the system. We first 
show that when an arbitrary off-diagonal vector r ( R ,  R ' )  is decomposed as 

rK = L .  rk + 8, -r: + 4, -r; (3.1) 

where 12, 8, and 4, are defined in the last section, then each of the components 
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I$, ri  and I'g is written in the form (2.4). We start from the expression (2.2) for a 
vector: 

rkL ' (p ,p ' )  = dXexp(iK.X) 1 d p  dp'  Y L ( p l j h ~ ) r ( p ,  p ' ;Xlj , , (P '~ ' )yZ,(p ' ) .  

(3 * 2) 
i 

The isotropy of the system is such that 

%r(p, pi ;  x )  = qap, apt; 3x1 
and therefore, by rotating the K-vector in (3.2) by a, it becomes 

(3 * 3) 

By choosing again a = Vk,  p = Ok and y = Ofor the Euler angles of rotation 3, the above 
equation can be written as 

r;L' = D L ~ ( K ) *  qPk, o k ,  01-l rg' . D ; , ~ , ( K )  (3.5) 
m," 

where in the RHS I'g' is dependent on K = ( K /  only. Noting that %-'a = bk, W ' j  = 4k 
and 3- l . t  = k ,  where 9, j and .t are the unit vectors along x, y and z axes, we can identify 
the x, y and z components of rK with rz, rr and I'[ respectively. Therefore 
ri, r& and rr in (3.1) become scalars in the sense of (2.4). 

It does not, however, mean that these quantities can be written in the form of (2.5), 
as pointed out in the last section. The precise forms of I-1, r: and rz are dependent on 
the equations governing them and they can be found out only by trial and error. We 
present the result here and then prove it. 

It is best presented by choosing a different recombination of the transverse com- 
ponents. We define two independent transverse unit vectors 

8 ,  = - (bk  + igk) /2  

8 -  = +(ek - i4~3~)/2 

(3 4 

(3.7) 

and 

and make the corresponding decomposition of a vector rK 
rK = L . rp + 8 ,  . r p  + 8 - . r p .  (3.8) 

Then it is shown that our equations (1.3.26) and (1.3.27) allow for the following solution: 

r ( p ) L L '  = ~ ( 1 1 "  ~ ' ( m  m" m')[r(p)]ft:yf.,(K) K (3.9) 
L" 

K 

where p = 0, +1 or -1 and Yf(K) is defined by extending the relation (2.19): 

Yf(K) = [(21 i- ~) /~JT] ' /*D~, (K)* .  (3.10) 

That is, although each component of a vector rK has the same symmetry as that of a 
scalar (2.4), the simpler form (2.5) is allowed only for the longitudinal component 
@) = rk (note that Yf(K) = YL(K) for p = 0). The representation (3.9) for p = +-1 is 
incompatible with the form (2.5); the expansion in terms of the YL(K) does not lead to 
the labelling by 1-values only. 
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For a proof, we start by showing that if an arbitrary vector V,  has the expression 
(3.8) and (3.9), so has the convolution 

r, = l,, h(K - K’)V,, 

and that its components are given by 

(3. l l a )  

(3.11b) 

with suitable kernel functions hh,(K, K’)  ( p ,  v = 0, -t 1). The proof of the above state- 
ment proceeds as follows. First we decompose V,, in (3. l l a )  into k ,  &+ and & -  com- 
ponents by using 

k’ = kcos 8 + &+[-(sin 8 ) / q 2 ]  e-’q + &-[+(sin 8 ) / d 2 ]  e‘p (3.12) 

&; = k[+(sin 0 ) /d2 ]  + &+[(I  + cos q / 2 ]  e-ip + &-[(I  - cos e ) p ]  el9 (3.13) 

8: = k[-(sin e) /V2] + &+[(I  - cos e)/z] e-’” + &-[(I + cos e ) p ]  eip. (3.14) 

Here 6 = (ek8 -t i 4 k , ) / q 2  and 8 and v, are the direction angles of K’ in theK-system. 
Note that the coefficients in (3.12)-(3.14) are the components of Dk,(v,, 8,O) for 1 = 
1. By this procedure we obtain the expressions for @ I ,  rp) and I$) in terms of 
VP), V g )  and Vi:). Next we perform the angular integrations of these equations in the 
K-system, assuming that the expression (3.9) holds for Vk). In doing so we recall that 
the functions Y f ( K )  have the same transformation property as (2.18); this is easily 
derived from (3.10) by using the formula 

DkP(K’) = c ~ k , ( W % , ( ~ ( v , k ,  O k ,  0) * K ’ ) .  (3.15) 
m 

We also note that the rotational matrix is written as 

D ~ * ( K )  = exp(-imv,k)dk,(8k) 

with 

2[-m + m  -2s m-m+2s 

x (cos ;) (- sin p) 

(3.16) 

(3.17) 

and therefore the v, integration is carried out separately. We thus obtain (3. l l b )  with 
the kernel functions being given by 

hL,(K, K’)  = I d(cos 8 ) h ( ( K 2  + K t 2  - 2KK‘ cos 1 9 ) ” ~ )  d&(8)dLu(8) .  

The above function has the following symmetry properties: 

1 

(3.18) 
-1  

hb,(K, K ’ )  = h\,(K, K‘)  (3.19) 

and 

hLP,-”(K,  K‘)  = hL,(K, K’)  (3.20) 

which are derivedfrom d $ ( 8 )  = (-1)”-Pd;,(8) = dLP,-,(8). 
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We have not considered the diagonal vector. It appears in the form 

(3 .21~)  

Since it is a special case of (3. l l a )  in which h(K - K ' )  is replaced by unity, its decom- 
position is readily obtained from (3.11b) and (3.18). Only 1 = 1 components are non- 
vanishing (dLY(f3)  forms a complete set for given p and v values) and we obtain 
hb, = hil  = h;,-l = hc,,, = h'-.l,-l = and hL1 = hi,- ,  = hio = hLl,o = -jdll for 
the kernel functions. It therefore becomes 

(3.21b) 

Note that rd is decomposed into a sum of K-dependent components: 

rd = %. r$O)(K) + 8 ,  . r$+)(K) + & -  - r p ( K )  (3.22) 

where 

r t ) (K)LL'  = c([ I" 1'1m m" m') [rlj"'];: Y ~ , , ( K ) .  (3.23) 
L" 

The first line of (3.21b) assures theKindependence of the RHS of (3.22) after summation. 
We still need to examine the product between a vector and a scalar. It is shown to 

yield a vector in the same form. For this purpose we slightly extend the algebra in the 
last section, which has been introduced to deal with the case p = 0 only, to the product 
between square matrices with different p-values, Let us call p the rank of a matrix. We 
first show that the product between ranks p and v yields a matrix of rank p + v .  This is 
readily confirmed by using the following formula: 

((21 + 1)(21' + 1) 
Y f ( K ) Y f , ( K )  = 

L', 4n(21" + 1) 

x C(11' l"lm m' m")C(11' 1"Ip p' p + p')Yt?p'  ( K )  (3.24) 

which is obtained by using the formula concerning the integration of the product of three 
rotational matrices, and noting that the functions Y t ( K )  form a complete orthonormal 
set for each value of p. By this we can see that the product of the square matrices 

(3 .25~)  r t fv )  = M ,  (11) * U'!' 

(3.25 b) 

where the multiplication 8 is extended as 

x C(1, 12 Y i p  v p + v)[Mp]j:3[Up];f ' .  (3.26) 

In the EMA equations for transport we need only the case of ,U = 0, k l .  This is because 
the matrices of rank * 1 are multiplied by rank -0 matrices only, so that no higher ranks 
appear in the equations. In this respect the current vertex is rather special. 
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By using equations (3.8), (3.9), (3.11), (3.21)-(3.23) and (3.25) we are now able to 
rewrite (1.3.26) and (1.3.27) in terms of cubic matrices. Making use of the symmetry of 
Kd shown in (3.21b) it becomes 

(3.28) 

(3.29) 

(3.30) 

In the practical calculation we need only four kernel functions h&, hhl, hi, and for 
each E-value, owing to the symmetry shown in (3.19) and (3.20). The inhomogeneous 
terms W&) and KOd are not to be confused with the longitudinal components 
W f )  and K$O), and given from (1.3.28) and (1.3.29) as 

The necessary input quantities in the above equations are 

I fK]f l , '  = ( 4 n ) " * t ' ( K ,  K ) Z ' ( K ) - 1 6 / / , 6 [ , ~ o  

V K ]  ft: = (4X) 1/2 Z' ( K )  t' ( K ,  K )  6 6 

(21 + 1)(21' + 1) 1'2 41d( K / K )  I" 
E -  K 2  

[BK]~; , '  = ( ) c(ll"1'~ooo) 
4z(21'' + 1) 

and 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

Here nK is the unperturbed current vertex, which has longitudinal component only (so 
that it is a rank-0 matrix). 
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Equations (3.27)-(3.36), together with the kernel function (3.18), are the principal 
results. The three-dimensional integral equations have thus been reduced to one-dimen- 
sional form. After having solved (3.29) and (3.30) self-consistently, the vertex correction 
is calculated by using the longitudinal component only: 

(3.37) 

and this completes the solution to our problem 

4. Discussion 

One of the remarkable features of the problem is that the transverse components are 
non-vanishing and affect the conduction through the coupling with the longitudinal 
component. This fact appears to be at variance with the following simple argument. The 
two-particle Green function of the system is written in the form 

( G ( K ,  K’)G’(K’, K ) )  = F ( K ,  K’;  6 )  = E Y L ( K ) Y E ( K f ) F l ( K ,  K‘)  (4.1) 

where 8 is the angle between K and K‘,  because our system is isotropic. Then, by using 
the first line of the above equation, we have 

L 

J K’(G(K, K ’ ) G ~ K ~ ,  K ) )  = K J F ( K ,  K’;  e )  cos e. (4.2) 
K K’ 

The key quantity for the transport calculation is therefore purely longitudinal and, no 
doubt, so is the vertex function. The answer to the above puzzle is that the same argument 
cannot be applied to each component in the second line of (4.1). Namely the quantity 

Y,(K)  dQKK’k’  Y,(K’) 

becomes proportional t o g  only when the summation over m is carried out. The spurious 
transverse components of the vertex corrections have come out because we have adopted 
the angular-momentum decomposition of the ionic momentum. This is the price we 
must pay for having reduced the integral equations to one-dimensional form. It is also 
related to the existence of the diagonal vertex corrections, which are independent of K- 
vector and therefore inevitably have transverse amplitudes. Indeed, if the system has 
only s scatterers, we have only one component ( 1  = 0 and m = 0) and our vertex function 
WK becomes purely longitudinal. The diagonal vertex function Kd is then shown to 
disappear. 

In our representation in terms of cubic matrices the scattering amplitudes between 
the longitudinal and transverse waves appear to be symmetric. However, it implies 
neither W p )  = Wf;) nor IWp)I = I Wp)l .  Note that we have not defined the cubic 
matrices in a symmetric way with respect to the positive and negative ranks. In particular, 
we need a different definition of multiplication for a different combination of the ranks. 
For the same reason the first selection rule discussed in section 2 for scalars does not 
hold in the case of vectors, whereas the second rule is still valid for vectors. This 
asymmetry of the definition is unavoidable; or the magnetic quantum numbers would 
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be included in the labelling. Nevertheless we find the introduction of our multiplication 
very useful, without which our equations would have had tremendous length. The 
original forms of the EMA equations are most clearly seen by using the notation 8, both 
for the DOS and the transport calculations. It will also serve as a useful tool for simpler 
computer programming. 

We have applied the present formalism to a system with s scatterers to see the 
multiple-scattering corrections to the Ziman formula. The corrections are seen to be 
very large when the scattering is strong (Fresard et a1 1989). We further plan to include 
higher-order phase shifts to deal with realistic non-simple systems. 
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